

Improving Microgrid Resiliency with Real-Time Simulation

Jean-Nicolas Paquin

Summary

- Definition of a Microgrid
- Microgrid Control System (MGCS) Functions and Hierarchy
- Complexity of the Microgrid and Importance of Testing
- Flexible Test Platforms with Real and Virtual Equipment
- OPAL-RT User Applications
- Looking Forward The Concept of Digital Twins

Definition of a Microgrid

U.S. DOE Microgrid Exchange Group

- Interconnected loads
- Distributed Energy Resources (DER)
- Clearly defined electrical boundaries
- Acts as a single controllable entity
- Can be connected to a grid or disconnected (isolated/islanded)

CIGRÉ C6.22 Working Group, Microgrid Evolution Roadmap

- Electricity distribution systems
- Contains loads and DERs
- Operated in a controlled / coordinated way
- Connected to the main power network or islanded

c.f. https://building-microgrid.lbl.gov/microgrid-definitions

Steady, Floating, Flying

All Electric Ship (AES)

c.f. Y. Xie et al., A PC-Cluster Based Real-Time Simulator for All-Electric Ship Integrated Power Systems Analysis and Optimization, IEEE ESTS Conference, 21-23 May 2007

More Electric Aircraft (MEA)

Microgrid Control System (MGCS) Functions and Hierarchy

MGCS Requir. – std. IEEE 2030.7

Dispatch:

- Grid-connected mode:
 - Import/export of power between the microgrid and the grid
 - Grid support / Frequency response / Voltage support participation
- Islanded mode:
 - Load / Generation balancing
 - BESS charging optimization
 - Secondary frequency and voltage regulation

- Transition:
 - Planned islanding
 - Unplanned islanding
 - Seemless
 - Emergency load shedding
 - Blackstart
 - Reconnection

Options for Sec. Controls (MGCS)

- Central decision making
- Global overview

CHNOLOGIES

- Distributed decision making
- Knowledge of environment and neighbors

- Decentralized decision making
- Knowledge of environment only

System Hierarchy

Complexity of the Microgrid and Importance of Testing

The Resilience Statement Pa=ra=dox

Challenges

- Decentralized controls, active loads and generators
- Ensuring cyber-secure operation
- Prosumers participating in the electricity market / deregulation
- Reliability and security VS low inertia system and potential of interactions between independent controls

The paradox

- Resilience will be ensured while complexity keeps increasing?
- Perhaps, if the microgrid and its components are designed and tested appropriately...
 - Distribution systems now requires the same testing and studies than Transmission systems

par-a-dox - a statement that is seemingly contradictory or opposed to common sense and yet is perhaps true c.f. merriam-webster.com

Test MGCS as per IEEE 2030.8

Test Automation Tools

Flexible Test Platforms with Real and Virtual Equipment

Flexible Tests - Real/Virtual equip.

OPAL-RT User Applications

ADMS Testbed – 3-Phase Unbal. Phasor RT-Sim.

Credit / Multi-author presentation :

M. Baggu, A. Pratt, Advanced Distribution Management System Testbed Development. [ONLINE 2018-03-12] https://www.smartgrid.gov/files/Pratt Baggu NREL ADMS Testbed.pdf

Power Hardware-in-the-Loop – Power Equipment Emulation

Looking Forward – The Concept of Digital Twins

Looking Forward – Digital Twins

Definition

Authors

"A Digital Twin is an integrated multiphysics, multiscale, probabilistic simulation of an as-built vehicle or system **that uses the best available physical models, sensor updates**, fleet history, Glaessgen & Stargel, (2012) etc., **to mirror the life of its corresponding** flying **twin**"

"Coupled model of the real machine **that operates in the cloud platform** and simulates the health condition with an integrated **knowledge from both data driven analytical algorithms** Lee, Lapira, Bagheri & Kao, (2013) **as well as other available physical knowledge**"

"digital twin is a real mapping of all components in the product life cycle using physical data, virtual data and interaction data between them"

"a dynamic virtual representation of a physical object or system across its lifecycle, using real-time data to enable understanding, learning and reasoning"

"Using a digital copy of the physical system to perform real-time optimization"

"A digital twin is a real time digital replica of a physical device"

Tao, Sui, Liu, Qi, Zhang, Song, Guo, Lu & Nee, (2018)

Bolton, McColl-Kennedy, Cheung, Gallen, Orsingher, Witell & Zaki, (2018)

Söderberg, R., Wärmefjord, K., Carlson, J. S., & Lindkvist, L. (2017)

Bacchiega (2017)

Digital Twins – Know your Assets

CYBER-PHYSICAL SYSTEM (CPS)

Digital Twin of the CPS (ex. Microgrid)

- Model parameter identification / state estimation
- Dynamic security assessment using faster-thanreal-time scenarios with virtual MGCS
- Advanced protections and controls
- HIL-cloud testing of controls

SIMULATOR (System Twin) Or Demail

THREAT DETECTION

Closing Remarks – Resilience and Security

• Advanced tools and techniques required to ensure resilience and security of the distribution system and microgrids.

Research	Design / Plan	Prototype	Test	Commission	Operate / Maintain
HIL					
RCP					
PHIL					
Faster-than-real-time					

- Increasing complexity of the grid will require innovation.
 - Consumers / Producers (Prosumers) and open electricity markets
 - Variability of the load
 - Constraints versus DER hosting capacity
 - Cyber-security / system stability
- Can the distribution system and microgrids be planned ahead 20+ years?
 - "Plug and play" concept in electric grid
 - > Active planning / Improved operation tools / Model-based decision-making
- Is the concept of Digital Twins an answer to ensure resilience and security of the future autonomous grid?

QUESTIONS?

Jean-Nicolas Paquin, P.Eng., M.Eng. Division Manager – Application eXpertise and Electrical Simulation jean-nicolas.paquin@opal-rt.com

