

Microgrid 2018

Innovations in Generation, Storage & Networks to Improve Efficiency and Ensure Reliability

Microgrid 2018

Moderator:

Daniel Fingleton, Energy Storage and Microgrid Program Manager, Solar Turbines

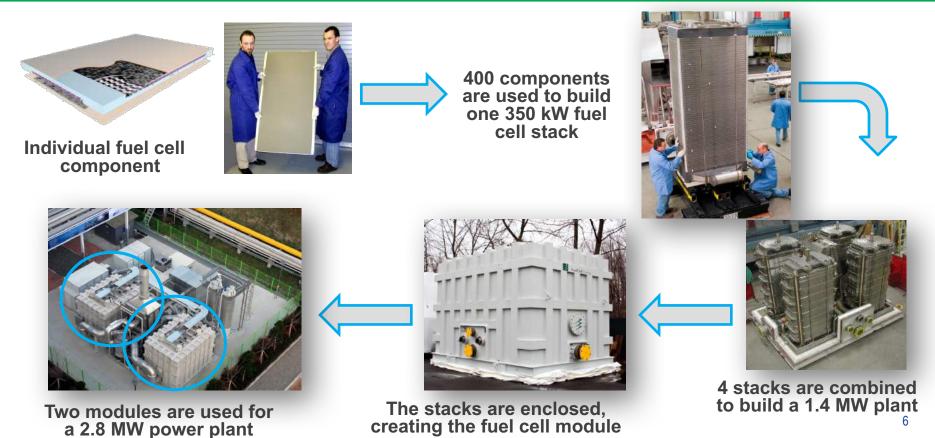
Presenters:

Geoff Slevin, Director, Business Development, FuelCell Energy Dean Tuel, Vice President of America Sales, Younicos Keith Gray, SCADA Project Engineer, POWER Engineers Dan Jones, Electrical System Studies Engineer, POWER Engineers

Fuel Cells and Microgrids Geoff Slevin

May 2018

- "FuelCell Energy and Toyota Announce <u>Renewable</u>
 <u>Transportation Fuel</u> Project" PR Nov 2017
- "FuelCell Energy Announces the Award of Three Fuel Cell Projects Totaling <u>39.8 Megawatts</u> by Long Island Power Authority" – PR July 2017
- "Inside this box could be the future of <u>carbon</u>
 <u>capture</u>" ExxonMobil TV ad Fall 2017



- Generate electricity, and sometimes usable waste heat, by virtue of an electrochemical reaction
- No combustion, no criteria pollutant emissions (NOx, SOx, PM10)
- More efficient than competing baseload technologies, produce lower CO₂ emissions.

Fuel Cell Configuration

to delivering to module

Mechanical Balance of Plant

Conditions & humidifies fuel prior

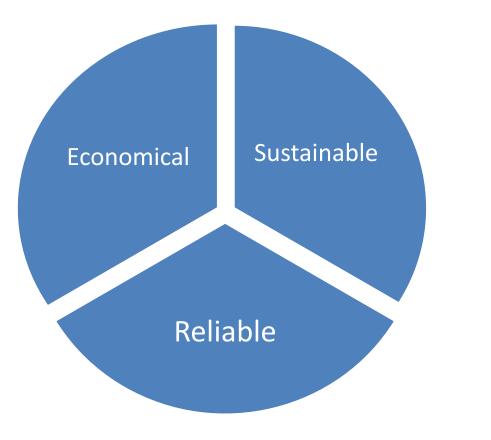
1.4 MW Fuel Cell CHP Plant

Electrical Balance of Plant Converts direct current produced by fuel cells to alternating current

1.4 MW Module

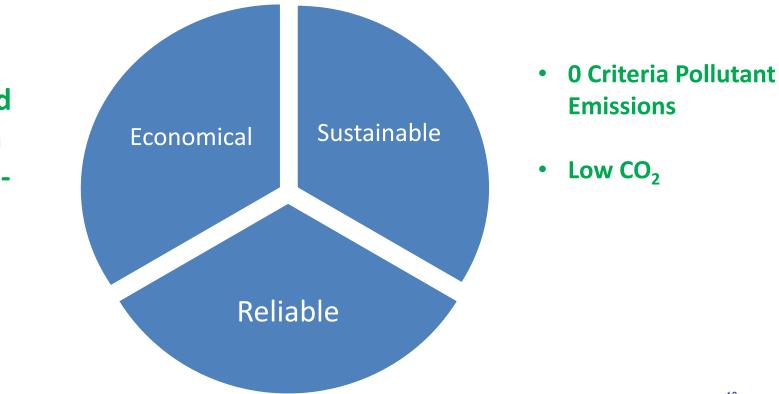
Case Study - PFIZER

Project Overview


- Grid-connected 5.6 MW fuel cell powered by Natural Gas
- Provides electricity and steam to 160 Acre Pfizer Groton campus
- Seamless grid independent capability
- Private, Critical Facility Microgrid

Benefits

- Closes electrical generation gap with a more reliable source than the commercial grid – makes site independent year round
- PPA structure with no up-front capital cost, delivers energy cost savings to Pfizer
- Enhances site sustainability profile
- Clean profile reduces permitting hurdles



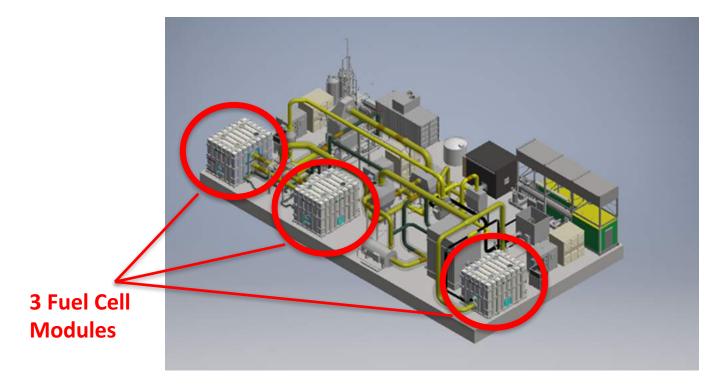
Microgrid Goals

Easily acquired through finance -PPAs

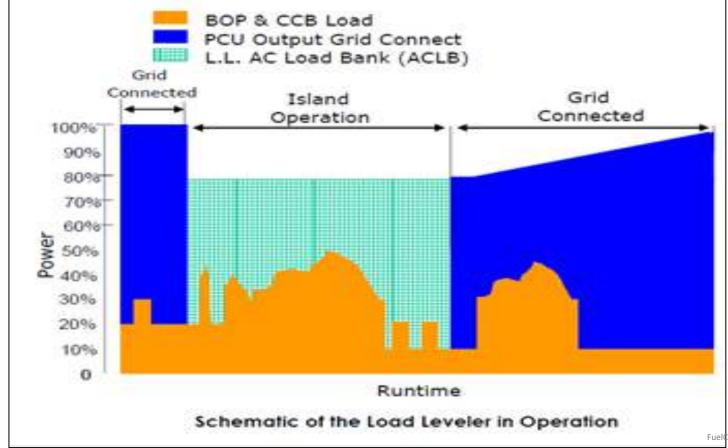
Higher availability vis-à-vis other clean baseload generation sources,

10

ergy, Inc. Copyright 2018

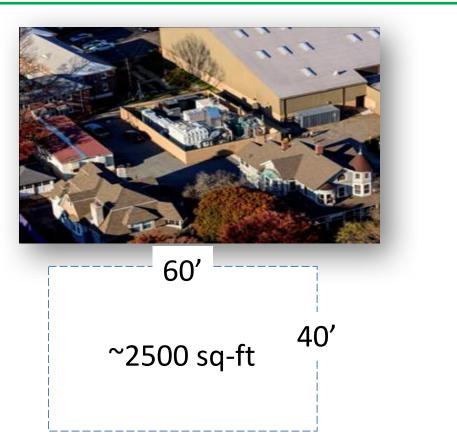

- Naval Submarine Base New London, CT
 - 1st permanent continental sub base
 - Home to 15 attack submarines
 - Employs ~9500 active duty, reserve and civilian personnel
- 20 year PPA with CMEEC (CT Muni Electric Energy Co-op – 6 Munis)
- Design interconnect compatible with the Navy microgrid
- Compliance with DOD directives for resiliency, clean power, operational costs

DOD - SUBASE Groton

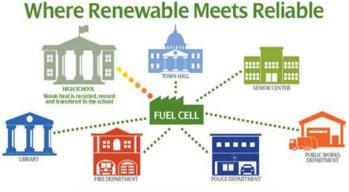

Delivered Electrical Efficiency: up to 60%

Citing Ease

No transmission losses



Grid Independent Capability


- 2.8 MW fueled by biogas
- 2nd 2.8 MW fuel cell installed at the facility
- Savings vs. grid no upfront costs
- Avoided clean air permitting challenge in CA

Tulare, CA Wastewater Treatment Plant

Case Study – Town of Woodbridge, CT

A look at UI's Woodbridge fuel cell project

Project Overview

- 2.2 MW combined heat & power fuel cell power plant
- Power to UI grid during normal operation
- Supplies 100% of Town microgrid power needs during grid outage
- Heat supplied to Amity High School
- Connecticut Microgrid Program Award

Benefits

- Helps UI achieve its Class I RPS goals
- In a grid outage, power to critical facilities police, fire, community services
- Savings to Amity High School ~ \$100K per year from avoided natural gas
- Enabled upgrade to local gas grid delivery infrastructure

Case Study – UC San Diego

 Grid-connected 2.8 MW fuel cell powered by Directed Biogas providing electricity and absorption chilling to campus grid

"A fuel cell powered by directed biogas is the cornerstone of the micro-grid operation"

<u>Benefits</u>

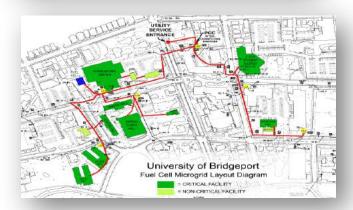
- Cost savings during normal operations
- Microgrid satisfies 90% of campus electric needs
- Carbon neutral by utilizing directed biogas

- Municipalities, companies, and governments are considering and selecting fuel cells to be a part of their microgrids
- The reliability, environmental, and now economic benefits of fuel cells make them a sound choice
- Watch this space . . . More to follow

Geoff Slevin

Director, Business Development gslevin@fce.com

www.fuelcellenergy.com



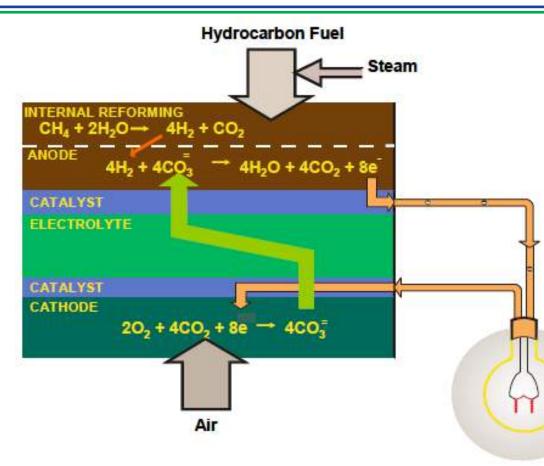
Case Study – University of Bridgeport

Project Overview

- 1.4 MW combined heat & power fuel cell power plant
- Supplies 80% of campus power needs
- Waste heat converted to hot water and supplied to three locations on campus
- Connecticut Microgrid Program Award

<u>Benefits</u>

- Cost savings during normal operations
- In a grid outage, power to critical facilities shelter ~2700 persons, security, dining
- Renewable Energy Research Lab "practice what we teach"
- Emissions reductions: 7,000 tons CO2, 64 tons SOx, 28 tons NOx



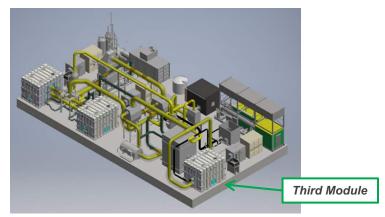
Availability

High fuel cell plant availability Availability FuelCell Energy Nuclear Coal Gas - CC Wind - MW USA Wind - SE USA Solar PV - SW USA Solar PV - NE USA 0% 20% 40% 60% 80% 100%

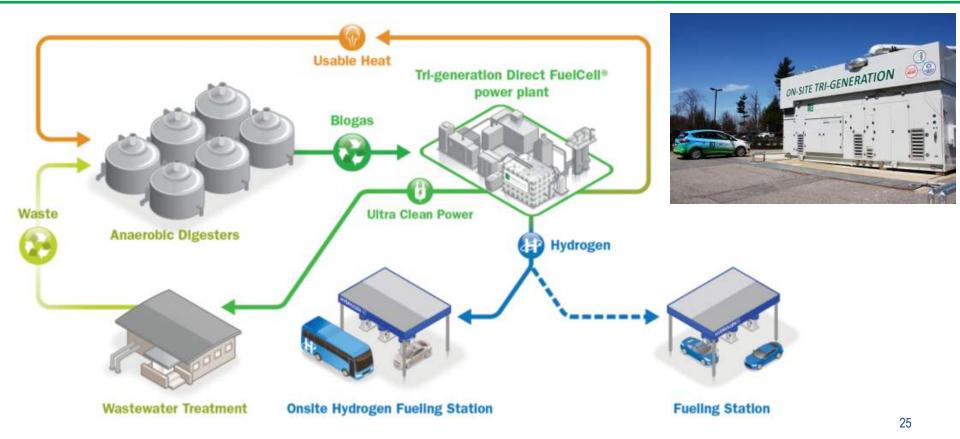
Source: FCE & NREL

Anode Reaction: $CO_3^{2-} + H_2 \rightarrow H_2O + CO_2 + 2e^{-}$

Cathode Reaction: $CO_2 + \frac{1}{2}O_2 + 2e^- \rightarrow CO_3^{2-}$


Overall Cell Reaction: $H_2 + \frac{1}{2}O_2 \rightarrow H_2O$

MW-Class Distributed Generation with Combined Cycle Electrical Efficiencies


	FuelCell Energy	Combined cycle gas plant	
Size	1.4 MW to 100 MW	400+ MW (scale req'd for high efficiency)	
Construction/Siting	Months; site WITHIN cities	Years; site AWAY FROM cities	
Electrical Efficiency	Plant efficiency: 47-60% Transmission losses: <u>None!</u> Delivered efficiency: 47-60%	Plant efficiency: 55-60% Transmission losses: <u>(6-9%)</u> Delivered efficiency: 46-54%	
Clean Emission Profile (virtually zero NO _x , SO _x , or PM)	Yes 📀	No ⊘	
Renewable Fuel Option/REC's	Yes 🝼	No ⊘	
Combined Heat & Power	Yes 🝼	Limited ⊘	
Scalable	Yes 📀	No ⊘	
Support Urban Redevelopment	Yes 🝼	No ⊘	
Affordable Carbon Capture	Yes 🥑	No ⊘	

3.7 MW Enhanced- Efficiency Fuel Cell Power Plant Configuration

Clean Fuel Production

	MW - Class	Sub-MW-Class	
Technology	Carbonate	Phosphoric Acid	Solid Oxide
System Size Range	1.4 MW - 3.7 MW	400 kW	200 kW
Typical Application	Utilities, campuses, industrial - baseload	Commercial buildings - baseload	Commercial buildings - baseload
Fuel	Natural gas, Biogas, others	Natural gas	Natural gas
Advantages	High efficiency, scalable, fuel flexible & CHP	СНР	High Efficiency
Electricial Efficiency	47-60%	40% - 42%	50% - 60%
Combined Heat & Power (CHP)	Steam, hot water, chilling	Hot water, chilling	Depends on technology used

Microgrid 2018

Microgrid 2018 Conference

ABOUT YOUNICOS AND AGGREKO

Global leader in mobile power solutions with expertise in hybrid and microgrid system integration

- 220MW+ of energy storage deployments
- Power electronics intelligent software hybrid functionality.
- 3000 MW+ Distributed energy generation

Round the clock service/remote monitoring

• 100 countries worldwide

What is a Microgrid

MICROGRID 101

Reliability

Islanding: Enhances local resilience Service loads in case of emergencies

Access to Energy

Remote communities Industrial parks, mines.

Flexibility

Parallel operations; provide grid services

Sustainability

Distributed assets typically renewable resources

WHAT IS A MICROGRID?

Any interconnected series of load and distributed generation assets that can operate fully independent from a centralized grid

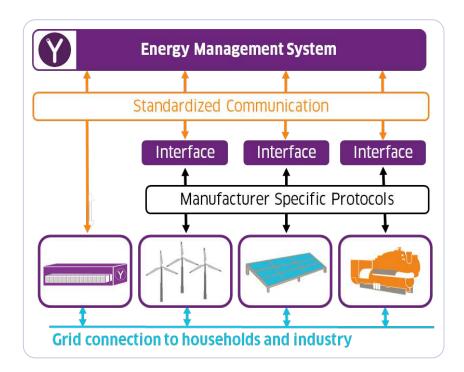
INCLUDES MULTIPLE RESOURCES

Natural Gas Generators

Y.Q Intelligent Software

Diesel

Generators

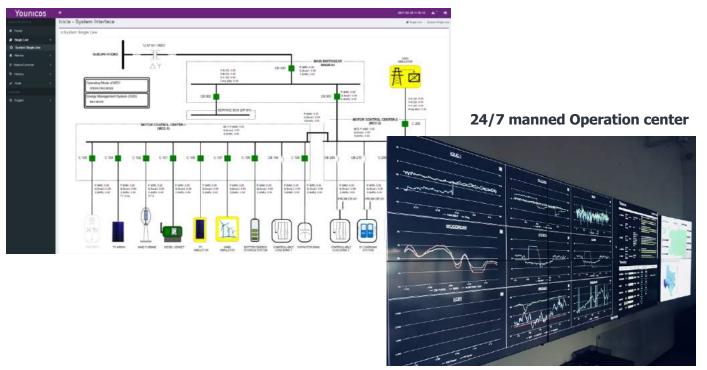

Transformer Balance of Plant

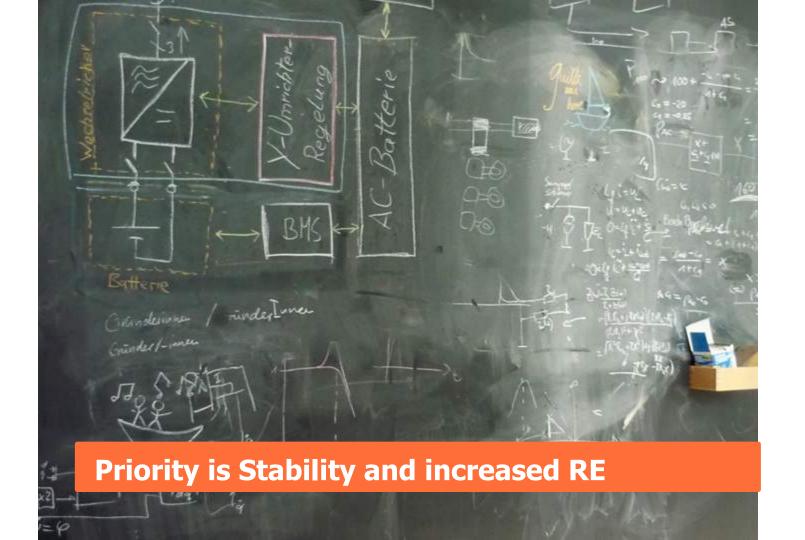
32

PV/Wind

THE BRAINS – OPTIMIZES AND CONTROLS

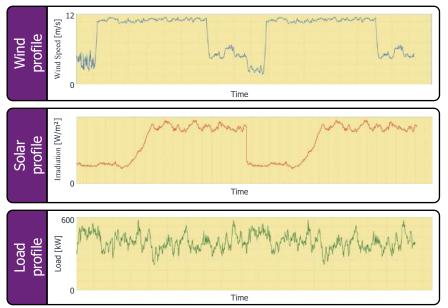
THE INTERACTION OF DIFFERENT GENERATION UNITS



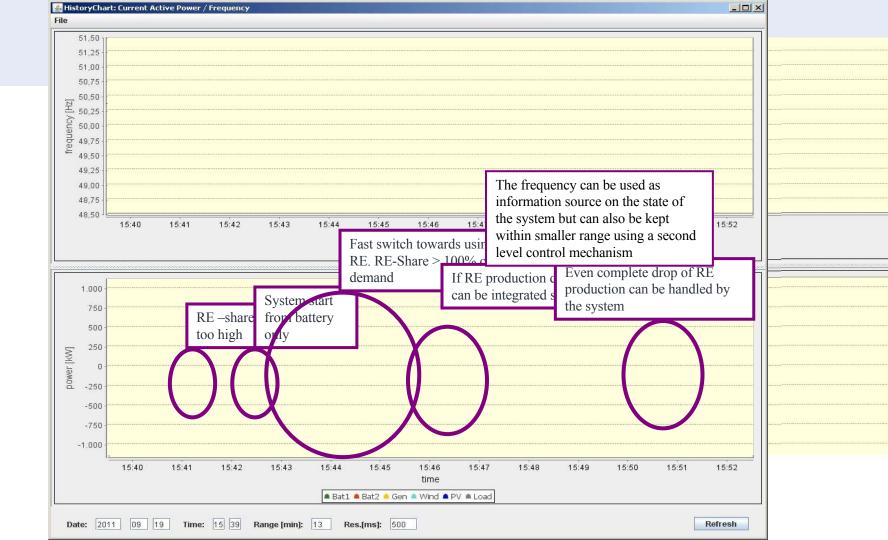

- Short-term forecasting of Renewable generation and load (power and energy)
- Optimized power limits and set-point for WPP/PVPP and BPP
- Triggers diesel if necessary
- Power balance of DG/BESS can be maintained at all times by the primary controls of the contributing units
- Maintains the voltage and frequency stability

SERVICES: REMOTE MONITORING & MAINTENANCE

Data analytics and historical trends – Preventative maintenance – Uptime %


WebUI

MICROGRID: DEMONSTRATION IMPROVING GRID STABILITY AND RENEWABLE PENETRATION


WE CREATED A "WORST-WORST-CASE" SCENARIO TO SHOW OUR SOLUTION'S ABILITIES

Extreme conditions

- Wind profile with strong changes
- Irradiation profile with strong changes
- High and very variable Load
- All profiles were measured on Graciosa but did not coincide

A situation with very unlikely combination of extreme conditions is chosen to test the solutions' robustness

Diesel Efficiency

-

5

a (

MICROGRID : DIESEL EFFICIENCY CASE

DG ACTS AS SPINNING ESS PROVIDES SPINNING RESERVES RESERVES **INCREASED FUEL** HIGHER LOADING INCREASES CONSUPTION EFFICIENCY

Operation without ESS

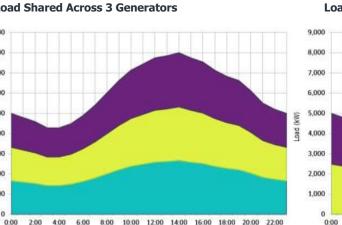
9,000

8,000

7,000

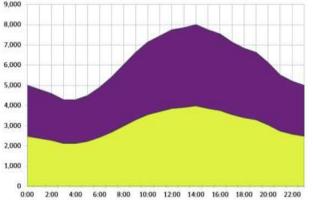
6,000

3,000


2,000

1,000

0


(MX) peol 4,000 5,000

Load Shared Across 3 Generators

Operation with ESS

Load Shared Across 2 Generators

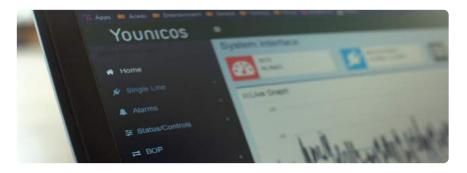
PROJECT IN DEVELOPMENT: AMAZONAS DIESEL PLUS ENERGY STORAGE APPLICATION IN REMOTE COMMUNITIES

• Spinning reserve displacement, Fuel savings, Diesel efficiency

	Recommended Battery Power (MW)	GENSET	Total Load (kWh/year)	Fuel Consumption with battery (L/y)	Cost of fuel (\$/y) @ \$1/L	Fuel Savings	Capex Battery	Indicative Payback Period
Site 1	1000	G3+	32,221,544	8,259,676	8,259,676	\$126,639	\$430,000	3.6
Site 2	-	DC16	29,544,327	-	-	\$0	-	-
Site 3	1000	G3+	110,481,184	27,926,998	27,926,998	\$22,215	\$430,000	31.6
Site 4	1000	G3+	36,740,218	9,361,045	9,361,045	\$160,501	\$430,000	2.8
Site 5	1000	G3+	82,271,995	20,797,595	20,797,595	\$98,605	\$430,000	4.8
						\$385,745 per year for viable sites		
							\$1,600,000	
						\$5,786,175 over 15		
40						years		

Utility Case Study with Austin Energy

UTILITY: INTEGRATION OF LOCAL DISTRIBUTED PV GENERATION TO PROVE 14 C/KWH


•Austin, Texas, United States

AUSTIN ENERGY SHINES PROJECT

- 1.75 MW/ 120 min Lithium Ion
- 2MW Rooftop PV
- Frequency response, back-up power, PV integration
- Commissioning: Q1/2018
- Goal: demonstrate a credible pathway LCOE of 14¢/kWh for solar energy when augmented by storage

C&I Case Study with Panasonic

PANASONIC HO **SOLAR PLUS STORAGE FOR COMMERICIAL AND INDUSTRIAL CUSTOMERS**

• Grid Connected providing multiple functions (See next slide)

REVENUE STACKING (BEYOND UPS)

Multi-Use Storage for Greater Market Impact

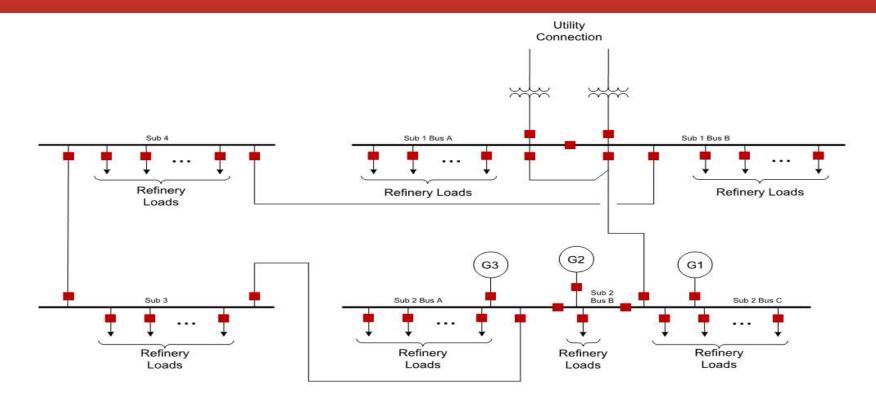
- Frequency Regulation as an ancillary service to the grid
- Solar Firming & Shifting for both collocated solar & solar penetration on feeder
- Peak Shaving to reduce peak demand on the feeder deferring distribution upgrades
- Back-up Power capability to create islanded microgrid for 24/7 operation of the Panasonic NOC
- Energy Arbitrage charge a low prices and discharge at high prices

Microgrid 2018

Island Detection in Microgrids

A Case Study

Presented by: Dan Jones, P. E., Keith Gray, P. E. *Coauthor*: Heath Lessard, P.E.


May 9, 2018

Introduction

- Oil refinery with cogeneration plant
 - Refinery uses electricity and steam from cogeneration
- Refinery-wide outage potential
 - Generators could not stay online in the event the refinery electrical system was islanded from the utility

System One-Line

49

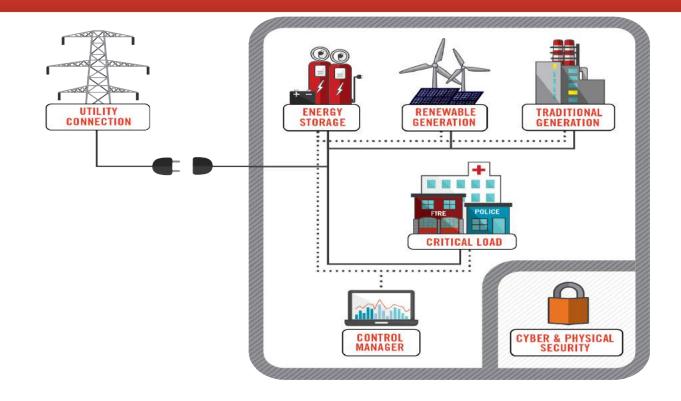
Generator Control Systems

- Normal Condition: Generators operate in parallel
 with the utility
 - Generator control systems take their frequency reference from the utility (droop mode of operation)
- Islanded Condition: Frequency reference is lost
 - The control system of one generator needs to become the new frequency reference for the other generators (Isochcronous mode of operation)

Island Detection Goals

- Detect an island condition and change generator control mode to keep refinery loads online
 - Must be fast, otherwise generator frequency may drift and trip offline on under or over frequency conditions depending on the generation to load mismatch at the moment of islanding
- Leverage greater use of existing cogeneration to provide system reliability

Island Detection Development Process


- Create Functional Specification
 - Describes how the system is supposed to operate
- Develop island detection logic
 - Breaker statuses provided to Logic Processor by IEDs via IEC
 61850 messages
- Develop IEC 61850 configuration
- Develop settings for Logic Controller
- Bench Test Logic Controller settings
- Field Commission and Test System

Application to Other Microgrids

- Island detection applies to other microgrid generation types/control systems
 - Inverter-based generation (PV, BESS, wind turbine)
 - Synchronous generators (Gas turbines, reciprocating machines, steam turbines, hydro)
- Depending on the mix of generation control types, all of these control systems may benefit from being told the system is islanded
- Can be used to trigger load shedding

Questions?

